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Chapter 7

STABILITY OF LINEAR
SYSTEMS

A general definition of stability is neither simple nor universal and depends on the
particular phenomenon being considered. In the case of the nonlinear ODE’s of inter-
est in fluid dynamics, stability is often discussed in terms of fixed points, attractors,
and the possibility of chaos. In these terms a system is said to be stable in a certain
domain if, from within that domain, some norm of its solution is always attracted
to the same fixed point. These are important and interesting concepts but we do
not dwell on them in this work. Qur basic concern is with time-dependent equations
that are controlled by stationary systems. i.e., ODE’s or OAE’s that are both lin-
ear and essentially autonomous, see Section 4.3.1. Chapters 4 and 6 developed the
representative forms of ODE’s generated from the basic PDE’s by the semidiscrete
approach, and then the OAFE’s generated from the representative ODE’s by applica-
tion of time-marching methods. Stationary forms of these equations are represented

by

du - -

— = Au— f(¢ d

= = Au—f(1) (T.1)
and

= Ch i (7.2)
respectively.

7.1 Dependence on the Eigensystem

Our definitions of stability are based entirely on the behavior of the homogeneous
parts of Egs. 7.1 and 7.2. The stability of Eq. 7.1 depends entirely on the eigensys-
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tem! of A. The stability of Eq. 7.2 can often also be related to the eigensystem of
its matrix. However, in this case the situation is not quite so simple since, in our
applications to partial differential equations (especially hyperbolic ones), a stability
definition can depend on both the time and space differencing. This is discussed in
Section 7.4. Analysis of these eigensystems has the important added advantage that
it gives an estimate of the rate at which a solution approaches a steady-state if a
system is stable. Consideration will be given to matrices that have both complete
and defective eigensystems, see Section 4.3.3, with a reminder that a complete system
can be arbitrarily close to a defective one, in which case practical applications can
make the properties of the latter appear to dominate.

If A and C are stationary, we can, in theory at least, estimate their fundamental
properties. For example. in Section 4.4.2 we found from our model ODE’s for dif-
fusion and periodic convection what could be expected for the eigenvalue spectrums
of practical physical problems containing these phenomena, see Fig. 4.1. These ex-
pectations are referred to many times in the following analysis of stability properties.
They are important enough to be summarized by the following:

e For diffusion dominated flows the A-eigenvalues tend to lie along the negative
real axis.

e For periodic convection-dominated flows the A-eigenvalues tend to lie along the
imaginary axis.

In many interesting cases, the eigenvalues of the matrices in Egs. 7.1 and 7.2
are sufficient to determine the stability. In previous chapters we designated these
eigenvalues as \,, and o, for Egs. 7.1 and 7.2, respectively, and we will find it
convenient to examine the stability of various methods in both the complex A and
complex o planes.

7.2 Inherent Stability of ODE’s

7.2.1 The Criterion

Here we state the standard stability criterion used for ordinary differential equa-
tions.

For a stationary matrix A, Eq. 7.1 is inherently stable if, when f is (7.3)

constant, u remains bounded as t — oc.

Note that inherent stability depends only on the transient solution of the ODE’s.

IThis is not the case for a nonautonomous system even if it is linear.
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7.2.2 Complete Eigensystems

If a matrix has a complete eigensystem, all of its eigenvectors are linearly independent,
and the matrix can be diagonalized by a similarity transformation. In such a case it
follows at once from Eq. 6.24, for example, that the ODE’s are inherently stable if
and only if

R(An) <0 forall m (7.4)

This states that, for inherent stability, all of the A eigenvalues must lie on, or to
the left of, the imaginary axis in the complex A plane. Inspecting Fig. 4.1, we see
that this criterion is satisfied for the model ODE’s representing both diffusion and
biconvection. It should be emphasized (as it is an important practical consideration
in convection-dominated systems) that the special case for which A = 44 is included
in the domain of stability. In this case it is true that u does not decay as t — oc, but
neither does it grow. so the above condition is met. Finally we note that for ODE’s
with complete eigensystems the eigenvectors play no role in the inherent stability
criterion.

7.2.3 Defective Eigensystems

In order to understand the stability of ODE’s that have defective eigensystems, we
inspect the nature of their solutions in eigenspace. For this we draw on the results in
Sections 4.3.3 and especially on Eqgs. 4.18 to 4.19 in that section. In an eigenspace
related to defective systems the form of the representative equation changes from a
single equation to a Jordan block. For example, instead of Eq. 4.33 a typical form of
the homogeneous part might be

uy A Uy
uy | =1 A Uz
uy 1T A [us

for which one finds the solution
ur(t) = wuy(0)e At
up(t) = [uz(0) + ug(0)i]eM

us(t) = |us(0) + ua(0)t + ;ul(O)tQ eM (7.5)

Inspecting this solution, we see that for such cases condition 7.4 must be modified
to the form

R(An) <0 forall m (7.6)
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since for pure imaginary A, u, and uz would grow without bound (linearly or quadrat-
ically) if uy and u; were initially non-zero. Theoretically this condition is sufficient
for stability in the sense of Statement 7.3 since t*e¢~l* — 0 as t — oc for all non-zero
¢. However, in practical applications the criterion may be worthless since there may
be a very large growth of the polynomial before the exponential “takes over” and
brings about the decay. Furthermore, on a computer such a growth might destroy
the solution process before it could be terminated.

Note that the stability condition 7.6 ezcludes the imaginary axis which tends to be
occupied by the eigenvalues related to biconvection problems. However, condition 7.6
is of little or no practical importance if significant amounts of dissipation are present.

7.3 Numerical Stability of OAE ’s

7.3.1 The Criterion

The OAE companion to Statement 7.3 is

For a stationary matrix C, Eq. 7.2 is numerically stable if, when 5 is (7.7)

u
constant, v remains bounded as n — oc.

We see that numerical stability depends only on the transient solution of the OAE ’s.
This definition of stability is sometimes referred to as asymptotic or time stability.

As we stated at the beginning of this chapter, stability definitions are not unique.
A definition often used in CFD literature stems from the development of PDE so-
lutions that do not necessarily follow the semidiscrete route. In such cases it is
appropriate to consider simultaneously the effects of both the time and space ap-
proximations. A time-space domain is fixed and stability is defined in terms of what
happens to some norm of the solution within this domain as the mesh intervals go to
zero at some constant ratio. We discuss this point of view in Section 7.4.

7.3.2 Complete Eigensystems

Consider a set of OAE ’s governed by a complete eigensystem. The stability criterion,
according to the condition set in Eq. 7.7, follows at once from a study of Eq. 6.25
and its companion for multiple o-roots. Eq. 6.31. Clearly, for such systems a time-
marching method is numerically stable if and only if

|(0m),] <1 forall m and & (7.8)
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This condition states that, for numerical stability, all of the o eigenvalues (both
principal and spurious, if there are any) must lie on or inside the unit circle in the
complex o-plane.

The similarity with the ODE discussion is very great. Again the sensitive case
occurs for the periodic-convection model which places the “correct” location of the
principal o-root precisely on the unit circle where the solution is only neutrally stable.
Further, for a complete eigensystem, the eigenvectors play no role in the numerical
stability assessment.

7.3.3 Defective Eigensystems

The discussion for these systems parallels the discussion for defective ODE’s. Examine
Eq. 6.15 and note its similarity with Eq. 7.5. We see that for defective OAE’s the
required modification to 7.8 is

|(om),] <1 for all m and k (7.9)

since defective systems do not guarantee boundedness for |o| = 1, for example in Eq.
7.5 if |o| = 1 and u2(0) and/or us(1) = 0 we get linear or quadratic growth.

7.4 Time-Space Stability and Convergence of OAE’s

Let us now examine the concept of stability in a different way. In the previous
discussion we considered in some detail the following approach:

1. The PDE’s are converted to ODE’s by approximating the space derivatives on
a finite mesh.

2. Inherent stability of the ODE’s is established by guaranteeing that Re(X) < 0.

3. Time-march methods are developed which guarantee that |o(Ah)| <1 and this
is taken to be the condition for numerical stability.

This does guarantee that a linear autonomous system, generated from a PDE on some
fized space mesh, will have a numerical solution that is bounded as t = nh — oc. This
does not guarantee that desirable solutions are generated in the time march process
as both the time and space mesh intervals approach zero.

Now let us define stability in the time-space sense. First construct a finite time-
space domain lying within 0 <z < L and 0 <{¢ < T'. Cover this domain with a grid
that is equispaced in both time and space and fix the mesh ratio by the equation

At = Az - ¢,
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Next reduce our OAE approximation of the PDE to a two-level? (i.e., two time-planes)
formula. Represent the homogeneous part of this formula by

Eq. 7.10 is said to be stable if any bounded initial vector, g, produces a bounded
solution vector, u,, as the mesh shrinks to zero for a fixed ¢,. This is the classical
definition of stability. It is often referred to as Lax or Lax-Richtmyer stability. Clearly
as the mesh intervals go to zero, the number of time steps, N. must go to infinity in
order to cover the entire fixed domain, so the criterion in 7.7 is a necessary condition
for this stability criterion.

The significance of this definition of stability arises through Laz’s Theorem, which
states that, if a numerical method is stable (in the sense of Lax) and consistent then it
is convergent. Consistency was briefly mentioned in Chapter 6 and is further discussed
in Section 7.8. A method is consistent if it produces no error (in the Taylor series
sense) in the limit as the mesh spacing and the time step go to zero (with ¢, fixed,
in the hyperbolic case). A method is convergent if it converges to the exact solution
as the mesh spacing and time step go to zero in this manner. Clearly. this is an
important property.

Applying simple recursion to Eq. 7.10, we find

ﬁn — Cnﬁo
and using vector and matrix p-norms (see Appendix 13.6) and their inequality rela-
tions, we have

[ldn ] = [|C™ || < [[CT]] - |[io]| < [IC]]" - |]tdo]] (7.11)
Since the initial data vector is bounded, the solution vector is bounded if
IClI <1 (7.12)

where ||C|| represents any p-norm of C. This is often used as a sufficient condition
for stability.

Now we need to relate the stability definitions given in Eqs. 7.8 and 7.9 with that
given in Eq. 7.12. In Egs. 7.8 and 7.9, stability is related to the spectral radius of
C, i.e.. its eigenvalue of maximum magnitude. In Eq. 7.12, stability is related to a
p-norm of C. It is clear that the criteria are the same when the spectral radius is a
lrue p-norm.

Two facts about the relation between spectral radii and matrix norms are well
known:

2Higher level equations can always be transformed to a two-level set by introducing new dependent
variables.
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1. The spectral radius of a matrix is its L, norm when the matrix is normal, i.e.,
it commutes with its transpose.

2. The spectral radius is the lower bound of all norms.

Furthermore, when C' is normal, the second inequality in Eq. 7.11 becomes an equal-
ity. In this case, Eq. 7.12 becomes both necessary and sufficient for stability. From
these relations we draw two important conclusions about the numerical stability of
methods used to solve PDE’s.

e The stability criteria in Egs. 7.8 and 7.12 are identical for stationary systems
when the governing matrix is normal. This includes symmetric, asymmetric,
and circulant matrices. These criteria are both necessary and sufficient for
methods that generate such matrices and depend solely upon the eigenvalues of
the matrices.

o If the spectral radius of any governing matrix is greater than one, the method
is unstable by any criterion. Thus for general matrices, the spectral radius
condition is necessary but not sufficient for Lax-stability.

7.5 Numerical Stability Concepts in the Complex
o-Plane

7.5.1 o0-Root Traces Relative to the Unit Circle

Whether or not the semi-discrete approach was taken to find the differencing approx-
imation of a set of PDE’s, the final difference equations can be represented by

Un4+1 = Cun — gn

Furthermore if C has a complete® eigensystem, the solution to the homogeneous part
can always be expressed as

Up = 107 T+ + €0 Ty + -+ O T

where the o, are the eigenvalues of C. If the semi-discrete approach is used, we can
find a relation between the o and the A eigenvalues. Strictly speaking this relation is
of no consequence in this Section. However, it serves as a very convenient guide as
to where we might expect the o-roots to lie relative to the unit circle in the complex

3The subject of defective eigensystems has been addressed. From now on we will omit further
discussion of this special case.
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o-plane. For this reason we will proceed to trace the locus of the o-roots as a function
of the parameter A for the equations modeling dissipation and periodic convection?.

Locus of the exact trace

Figure 1 shows the exact trace of the o-root if it is generated by either e~

e®". In both cases the o represents the starting value where h = 0 and ¢ = 1. As
the magnitude of Ah increases, the trace representing the dissipation model heads

towards the origin where it resides when Ak =— —oc. On the other hand, as the

or

magnitude of wh increases, the trace representing the biconvection model spins around
the circumference of the unit circle which it never leaves. We must be careful in
interpreting o when it is representing ¢*. The fact that it lies on the unit circle
means only that the amplitude of the representation is correct. it tells us nothing of
the phase error (see Eq. 6.34). The phase error relates to the position on the unit
circle.

Examples of some methods

Now let us compare the exact o-root traces with some that are produced by actual
time-marching methods. Table 7.1 shows the A-o relations for a variety of methods.
Figures 7.2 and 7.3 illustrate the results produced by various methods when they are
applied to the model ODE'’s for diffusion and periodic-convection, Eqs. 4.4 and 4.5.
It is implied that the behavior shown is typical of what will happen if the methods
are applied to diffusion- (or dissipation-) dominated or periodic convection-dominated
problems as well as what does happen in the model cases. Most of the important
possibilities are covered by the illustrations.

4Qr, if you like, the parameter h for fixed values of A equal to -1 and i for the dissipation and
biconvection cases, respectively.
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1 o—-1-Xh=0 Explicit Euler

2 0*=2\ho—1=0 Leapfrog

3 o’— (143X h)o+ 3Ah =0 AB2

4 0 — (14 BAh)o* + 8Aho — SAR =0 AB3

5 oll—=Xh)—1=0 Implicit Euler

6 o(l— 1)\h) (1 + 3Ah) =0 Trapezoidal

7T 0%l —2X\h) — —O' + % =0 2nd O Backward

8 (72( 5)\h) (1—|—%)\h)a—|—11—2)\h =0 AM3

9 o= (14 BAh+ 22X h%)o + HAR(1 + 2AR) =0 ABM3

10 o3 —(1+ 2)\]1)02 + %)\h()‘ — %/\h =0 Gazdag

11 o—1—XAh—3Ah*=0 RK2

12 0 —1 =Xk — 3X%h* — ZX°R° — LMA* =0 RK4

13 o1 —1Ah) — 3Aho — (1 4+ 3Ah) =0 Milne 4th
Table 7.1. Some A — o Relations

I(o
\ (o)
>
R (o)
Ah _ _1moh
c=e" A= -0 6=e , ®h—> oo
a) Dissipation b) Convection

Figure 7.1: Exact traces of o-roots for model equations.
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Figure 7.2: Traces of o-roots for various methods.
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Figure 7.3: Traces of o-roots for various methods (cont’d).
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a. Explicit Euler Method

Figure 7.2 shows results for the explicit Euler method. When used for dissipation-
dominated cases it is stable for the range -2< Ah <0. (Usually the magnitude of A has
to be estimated and often it is found by trial and error). When used for biconvection
the o- trace falls outside the unit circle for all finite h, and the method has no range
of stability in this case.

b. Leapfrog Method

This is a two-root method, since there are two o’s produced by every A\. When
applied to dissipation dominated problems we see from Fig. 7.2 that the principal
root 1s stable for a range of Ah, but the spurious root is not. In fact, the spurious
root starts on the unit circle and falls outside of it for all R(Ah) < 0. However, for
biconvection cases, when X is pure imaginary, the method is not only stable, but it
also produces a o that falls precisely on the unit circle in the range 0 < wh < 1.
As was pointed out above, this does not mean, that the method is without error.
Although the figure shows that there is a range of wh in which the leapfrog method
produces no error in amplitude, it says nothing about the error in phase. More 1s said
about this in Chapter 8.

c. Second-Order Adams-Bashforth Method

This is also a two-root method but, unlike the leapfrog scheme. the spurious root
starts at the origin, rather than on the unit circle, see Fig. 7.2. Therefore, there is
a range of real negative Ak for which the method will be stable. The figure shows
that the range ends when Ah < —1.0 since at that point the spurious root leaves the
circle and |og| becomes greater than one. The situation is quite different when the
A-root is pure imaginary. In that case as wh increases away from zero the spurious
root remains inside the circle and remains stable for a range of wh. However, the
principal root falls outside the unit circle for all wh > 0, and for the biconvection
model equation the method is unstable for all A.

d. Trapezoidal Method

The trapezoidal method is a very popular one for reasons that are partially illustrated
in Fig. 7.3. Its o-roots fall on or inside the unit circle for both the dissipating and
the periodic convecting case and, in fact, it is stable for all values of Ah for which
A itself is inherently stable. Just like the leapfrog method it has the capability of
producing only phase error for the periodic convecting case. but there is a major
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difference between the two since the trapezoidal method produces no amplitude error
for any wh — not just a limited range between 0 < wh < 1.

e. Gazdag Method

The Gazdag method was designed to produce low phase error. Since its characteristic
polynomial for o is a cubic (Table 7.1, no. 10), it must have two spurious roots in
addition to the principal one. These are shown in Fig. 7.3. In both the dissipation
and biconvection cases, a spurious root limits the stability. For the dissipating case,
%, and for the biconvecting case.
when wh > % Note that both spurious roots are located at the origin when A = 0.

a spurious root leaves the unit circle when \h < —

f,g. Second- and Fourth-Order Runge-Kutta Methods, RK2 and RK4

Traces of the o-roots for the second- and fourth-order Runge-Kutta methods are
shown in Fig. 7.3. The figures show that both methods are stable for a range of
Ah when Ah is real and negative, but that the range of stability for RK4 is greater,
going almost all the way to -2.8, whereas RK2 is limited to -2. On the other hand for
biconvection RK?2 is unstable for all wh, whereas RK4 remains inside the unit circle
for 0 < wh < 2¢/2. One can show that the RK4 stability limit is about |Ah| < 2.8 for
all complex Ah for which £(X) < 0.

7.5.2 Stability for Small At

It is interesting to pursue the question of stability when the time step size, h. is small
so that accuracy of all the A-roots is of importance. Situations for which this is not
the case are considered in Chapter 8.

Mild instability

All conventional time-marching methods produce a principal root that is very close
to eM for small values of Ah. Therefore, on the basis of the principal root, the
stability of a method that is required to resolve a transient solution over a relatively
short time span may be a moot issue. Such cases are typified by the AB2 and RK2
methods when they are applied to a biconvection problem. Figs. 7.2c and 7.3f show
that for both methods the principal root falls outside the unit circle and is unstable
for all wh. However, if the transient solution of interest can be resolved in a limited
number of time steps that are small in the sense of the figure, the error caused by this
instability may be relatively unimportant. If the root had fallen inside the circle the
method would have been declared stable but an error of the same magnitude would
have been committed, just in the opposite direction. For this reason the AB2 and the
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RK2 methods have both been used in serious quantitative studies involving periodic
convection. This kind of instability is referred to as mild instability and is not a
serious problem under the circumstances discussed.

Catastrophic instability

There is a much more serious stability problem for small & that can be brought about
by the existence of certain types of spurious roots. One of the best illustrations of this
kind of problem stems from a critical study of the most accurate, explicit, two-step,
linear multistep method (see Table 7.1):

Up41 = _4un —I_ 5un—1 —I_ 2h <2u’/n -I' u;_l) (713)

One can show, using the methods given in Section 6.5, that this method is third-
order accurate both in terms of ery and er,, so from an accuracy point of view it is
attractive. However, let us inspect its stability even for very small values of Ah. This
can easily be accomplished by studying its characteristic polynomial when Ah — 0.
From Eq. 7.13 it follows that for Ah = 0, P(E) = E* + 4FE — 5. Factoring P(o) =0
we find P(o) = (0 — 1)(6 +5) = 0. There are two o-roots; oy, the principal one,
equal to 1, and oy, a spurious one, equal to -5!!

In order to evaluate the consequences of this result, one must understand how
methods with spurious roots work in practice. We know that they are not self start-
ing, and the special procedures chosen to start them initialize the coefficients of the
spurious roots, the ¢,,; for £ > 1 in Eq. 6.31. If the starting process is well designed
these coefficients are forced to be very small, and if the method is stable, they get
smaller with increasing n. However, if the magnitude of one of the spurious o is
equal to 5, one can see disaster is imminent because (5)'° &~ 107. Even a very small
initial value of ¢, is quickly overwhelmed. Such methods are called catastrophically
unstable and are worthless for most, if not all, computations.

Milne and Adams type methods

If we inspect the o-root traces of the multiple root methods in Figs. 7.2 and 7.3, we
find them to be of two types. One type is typified by the leapfrog method. In this
case a spurious root falls on the unit circle when h — 0. The other type is exemplified
by the 2nd-order Adams-Bashforth and Gazdag methods. In this case all spurious
roots fall on the origin when h — 0.

The former type is referred to as a Milne Method. Since at least one spurious root
for a Milne method always starts on the unit circle, the method is likely to become
unstable for some complex A as h proceeds away from zero. On the basis of a Taylor
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series expansion, however, these methods are generally the most accurate insofar as
they minimize the coefficient in the leading term for er;.

The latter type is referred to as an Adams Method. Since for these methods
all spurious methods start at the origin for 2 = 0, they have a guaranteed range of
stability for small enough h. However, on the basis of the magnitude of the coefficient
in the leading Taylor series error term, they suffer, relatively speaking, from accuracy.

For a given amount of computational work, the order of accuracy of the two
types is generally equivalent, and stability requirements in CFD applications generally
override the (usually small) increase in accuracy provided by a coefficient with lower
magnitude.

7.6 Numerical Stability Concepts in the Complex
Ah Plane

7.6.1 Stability for Large h.

The reason to study stability for small values of h is fairly easy to comprehend.
Presumably we are seeking to resolve some transient and, since the accuracy of the
transient solution for all of our methods depends on the smallness of the time-step,
we seek to make the size of this step as small as possible. On the other hand. the
cost of the computation generally depends on the number of steps taken to compute
a solution, and to minimize this we wish to make the step size as large as possible.
In the compromise, stability can play a part. Aside from ruling out catastrophically
unstable methods, however, the situation in which all of the transient terms are
resolved constitutes a rather minor role in stability considerations.

By far the most important aspect of numerical stability occurs under conditions
when:

e One has inherently stable, coupled systems with A—eigenvalues having widely
separated magnitudes.

or

o We seek only to find a steady-state solution using a path that includes the
unwanted transient.

In both of these cases there exist in the eigensystems relatively large values of
|Ah| associated with eigenvectors that we wish to drive through the solution process
without any regard for their individual accuracy in eigenspace. This situation is
the major motivation for the study of numerical stability. It leads to the subject of
stiffness discussed in the next chapter.
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7.6.2 Unconditional Stability, A-Stable Methods

Inherent stability of a set of ODE’s was defined in Section 7.2 and. for coupled sets
with a complete eigensystem, it amounted to the requirement that the real parts of all
A eigenvalues must lie on, or to the left of, the imaginary axis in the complex A plane.
This serves as an excellent reference frame to discuss and define the general stability
features of time-marching methods. For example. we start with the definition:

A numerical method is unconditionally stable if it is stable for all ODE’s

that are inherently stable.

A method with this property is said to be A-stable. A method is A, stable if
the region of stability contains the negative real axis in the complex Ak plane, and
I-stable 1f it contains the entire imaginary axis. By applying a fairly simple test for
A-stability in terms of positive real functions to the class of two-step LMM’s given in
Section 6.48, one finds these methods to be A-stable if and only if

1
9299—|-§ (7.14)
1
> - 1
£> (7.15)
1
§§0—|—L,9—§ (7.16)

A set of A-stable implicit methods is shown in Table 7.2.

0 £ ¢ | Method | Order
1 0 0 | Implicit Euler | 1
1/2 0 0 Trapezoidal 2
1 1/2 0 2nd O Backward 2
3/4 0 —1/4 Adams type 2
1/3 —1/2 —-1/3 Lees type 2
/2 =1/2 —1/2 Two-step trapezoidal 2
5/8 —1/6 —=2/9 A-contractive 2
Table 7.2. Some unconditionally stable (A-stable) implicit methods.

Notice that none of these methods has an accuracy higher than second-order. It can
be proved that the order of an A-stable LMM cannot exceed two, and, furthermore
that of all 2nd-order, A-stable methods the trapezoidal method has the smallest
truncation error.
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Returning to the stability test using positive real functions one can show that a
two-step LMM is A,-stable if and only if

1

1
£> - (7.18)
0<h—¢ (7.19)

For first-order accuracy, the inequalities 7.17 to 7.19 are less stringent than 7.14 to
7.16. For second-order accuracy, however, the parameters (6. &, ¢) are related by the
condition

1
s— ¢t — 0+ =
= t3

and the two sets of inequalities reduce to the same set which is

<201 (7.20)
£ > —% (7.21)

Hence, two-step, second-order accurate LMM’s that are A-stable and A,-stable share
the same (¢, &, 0) parameter space. Although the order of accuracy of an A-stable
method cannot exceed two, A,-stable LMM methods exist which have an accuracy of
arbitrarily high order.

It has been shown that for a method to be I-stable it must also be A-stable.
Therefore, no further discussion is necessary for the special case of I-stability.

It is not difficult to prove that methods having a characteristic polynomial for
which the coefficient of the highest order term in E is unity® can never be uncondi-
tionally stable. This includes all explicit methods and predictor-corrector methods
made up of explicit sequences. Such methods are referred to, therefore, as condition-
ally stable methods.

7.6.3 Stability Contours in the Complex A2 Plane.

A very convenient way to present the stability properties of a time-marching method
is to plot the locus of the complex Ak for which |o| = 1, such that the resulting
contour goes through the point Ah = 0. Here |o| refers to the maximum absolute
value of any o, principal or spurious, that is a root to the characteristic polynomial for

50r can be made equal to unity by a trivial normalization (division by a constant independent of
Ah). The proof follows from the fact that the coefficients of such a polynomial are sums of various
combinations of products of all its roots.
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a given Ah. It follows from Section 7.3 that on one side of this contour the numerical
method is stable while on the other, it is unstable. We refer to it, therefore, as a
stability contour.

Typical stability contours for both explicit and implicit methods are illustrated in
Fig. 7.4, which is derived from the one-root §-method given in Section 6.4.4.

Contours for explicit methods

Fig. 7.4a shows the stability contour for the explicit Euler method. In the following
two ways it is typical of all stability contours for explicit methods:

1. The contour encloses a finite portion of the left-half complex Ah-plane.

2. The region of stability is inside the boundary, and therefore, it is conditional.

However, this method includes no part of the imaginary axis (except for the origin)
and so it is unstable for the model biconvection problem. Although several explicit
methods share this deficiency (e.g., AB2, RK2), several others do not (e.g., leapfrog,
Gazdag, RK3, RK4), see Figs. 7.5 and 7.6. Notice in particular that the third- and
fourth-order Runge-Kutta methods. Fig. 7.6, include a portion of the imaginary axis
out to £1.9¢ and £2/2i, respectively.

I(ah) I(1h) I (Ah)
A Stable
\
Unstable
\ _
Y h 1
Stable Unstable

D I . >

Stable R 1h) R Ah) Unstable R 1h)
\

a) Euler Explicit 9 =0 b) Trapezoid Implicit 0 = 1/2 c) Euler Implicit 6 =1

Figure 7.4: Stability Contours for the §-method.

Contours for unconditionally stable implicit methods

Fig. 7.4c shows the stability contour for the implicit Euler method. It is typical of
many stability contours for unconditionally stable implicit methods. Notice that the
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Iiahy
Slable 1.0
only on
Imag Axis
0.5
Riah)
a) AB2 by Leapirog

I(nh) I(ah)

-0.4 -0.2 -3.0 -2.0 -1.0

c) Gazdag d) ABM3

Figure 7.5: Stability Contours for some explicit methods.

I (Ah)
A
— 3.0
St abl e
Regi ons
2.0
— 1.0

Figure 7.6: Stability Contours for Runge-Kutta methods.
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method is stable for the entire range of complex Ah that fall outside the boundary.
This means that the method is numerically stable even when the ODFE’s that it is
being used to integrate are inherently unstable. Some other implicit unconditionally
stable methods with the same property are shown in Fig. 7.7. In all of these cases
the imaginary axis is part of the stable region.

I (M)

. I (h) _
Stable Outside Stable Outside
2.0 2.
1.0 1 Unstable
Unstable
' \ \ \ T T
1.0 20 30 a0 N Ah) 1.0 20 R(Ah)
a) 2nd Order Backward Inplicit b) Adanms Type

Figure 7.7: Stability Contours for the 2 unconditionally stable implicit methods.

Not all unconditionally stable methods are stable in some regions where the ODE’s
they are integrating are inherently unstable. The classic example of a method that
is stable only when the generating ODE’s are themselves inherently stable is the
trapezoidal method, i.e., the special case of the #-method for which 6§ = % The
stability boundary for this case is shown in Fig. 7.4b. The boundary is the imaginary
axis and the numerical method is stable for Ah lying on or to the left of this axis.

Two other methods that have this property are the two-step trapezoidal method
Untp1 = Up—1 T h(“;ﬂ + u;—1)

and a method due to Lee

2

Notice that both of these methods are of the Milne type.

Contours for conditionally stable implicit methods

Just because a method is implicit does not mean that it is unconditionally stable.
Two illustrations of this are shown in Fig. 7.8. One of these is the Adams-Moulton
3rd-order method (no. 8, Table 7.1). Another is the 4th-order Milne method given

by the point operator
1
Upg1 = Up_1 + gh(u;H + 4ul, + u;_l)

and shown in Table 7.1 as no. 13. It is stable only for A = 7w when 0 < w < V3.
Its stability boundary is very similar to that for the leapfrog method (see Fig. 7.5b).
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I(ah)
I(ah)
M 3.0
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only on - 20
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Figure 7.8: Stability Contours for the 2 conditionally stable implicit methods.

7.7 Fourier or von Neumann Stability Analysis

By far the most popular form of stability analysis for numerical schemes is the Fourier
or von Neumann approach. This analysis is usually carried out on point operators and
it does not depend on an intermediate stage of ODFE’s. Strictly speaking it applies
only to difference approximations of PDE’s that produce OAE’s which are linear,
have no space or time varying coefficients, and have periodic boundary conditions.’
In practical application it is often used as a guide for estimating the worthiness of a
method. Years of experience have shown that it serves as a fairly reliable necessary
stability condition, but it is by no means a sufficient one.

7.7.1 The Basic Procedure

One takes data from a “typical” point in the flow field and uses this as constant
throughout time and space according to the assumptions given above. Then one
imposes a spatial harmonic as an initial value on the mesh and asks the question:
Will its amplitude grow or decay in time? The answer is determined by finding the
conditions under which

u(t,z) = e - e (7.22)

is a solution to the difference equation. Since, for the general term,

‘ . .
(n+4) — ea(t+£At) . ezk(m—}-mAm) eaZAt . ezk'mAm . u(’fl)

Ujtm J

6 Another way of viewing this is to consider it as an initial value problem on an infinite space
domain.
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the quantity u;n)

expressions, we find the term e

is common to every term and can be factored out. In the remaining

@At which we represent by o, thus:

o= oAt

Then, since ¢®! = (eam)” = o”, it is clear that

For numerical stability |o| <1 (7.23)

and the problem is to solve for the o¢’s produced by any given method and, as a
necessary condition for stability, make sure that, in the worst possible combination
of parameters, condition 7.23 is satisfied”.

7.7.2 Some Examples

The procedure can best be explained by examples. Consider as a first example the
finite difference approximation to the model diffusion equation known as Richardson’s
method of overlapping steps. This was mentioned in Section 4.1 and given as Eq.
4.1:

. e AL n n
ug +1) _ ug R + l/m(ug_& — 2u§ ) + ug_)l) (7.24)

Substitution of Eq. 7.22 into Eq. 7.24 gives the relation

2AL /. :
| 1kAx —ikAx
c=o0c "+ 1/@(6 —2+4e )
or
4y At
o’ + [ v (1—C0sk’A;z:)]a—1 =0 (7.25)
Ax?
2b

Thus Eq. 7.22 is a solution of Eq. 7.24 if ¢ is a root of Eq. 7.25. The two roots of

7.25 are
01,2 = —b:i: \/bz—|—1

from which it is clear that one |o| is always > 1. We find, therefore, that by the
Fourier stability test. Richardson’s method of overlapping steps is unstable for all v,

k and At.

“If boundedness is required in a finite time domain, the condition is often presented as |o| <

1+ O(At).
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As another example consider the finite-difference approximation for the model
biconvection equation

(nt1) _ (n)  GAL (n
ST = - 2Ax (uH)l - “J‘—)l) (7.26)
In this case A
AL
le—aA—m-i-sinkA:x

from which it is clear that |o| > 1 for all nonzero a and k. Thus we have another
finite-difference approximation that, by the Fourier stability test, is unstable for any
choice of the free parameters.

7.7.3 Relation to Circulant Matrices

The underlying assumption in a Fourier stability analysis is that the C' matrix. deter-
mined when the differencing scheme is put in the form of Eq. 7.2, is circulant. Such
being the case, the '** in Eq. 7.22 represents an eigenvector of the system, and the
two examples just presented outline a simple procedure for finding the eigenvalues of
the circulant matrices formed by application of the two methods to the model prob-
lems. The choice of o for the stability parameter in the Fourier analysis, therefore,
is not an accident. It is exactly the same o we have been using in all of our previous
discussions, but arrived at from a different perspective.

If we examine the preceding examples from the viewpoint of circulant matrices
and the semi-discrete approach, the results present rather obvious conclusions. The
space differencing in Richardson’s method produces the matrix s- B,(1, —2, 1) where s
is a positive scalar coefficient. From Appendix A.5 we find that the eigenvalues of this
matrix are real negative numbers. Clearly, the time-marching is being carried out by
the leapfrog method and, from Fig. 7.5, this method is unstable for all eigenvalues with
negative real parts. On the other hand, the space matrix in Eq. 7.26 is B,(—1,0,1),
and according to Appendix A.5. this matrix has pure imaginary eigenvalues. However,
in this case the explicit Euler method is being used for the time-march and, according
to Fig. 7.4, this method is always unstable for such conditions.

7.8 Consistency

Consider the model equation for diffusion analysis

ou 0%*u
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Many years before computers became available (1910, in fact), Lewis F. Richardson
proposed a method for integrating equations of this type. We presented his method
in Eq. 4.1 and analyzed its stability by the Fourier method in Section 7.7.

In Richardson’s time, the concept of numerical instability was not known. How-
ever, the concept is quite clear today and we now know immediately that his approach
would be unstable. As a semi-discrete method it can be expressed in matrix notation
as the system of ODE’s:

du v -
i A$2B(1,—2,1)u—|—(bc) (7.28)

with the leapfrog method used for the time march. Our analysis in this Chapter
revealed that this is numerically unstable since the A-roots of B(1,-2,1) are all real
and negative and the spurious o-root in the leapfrog method is unstable for all such
cases, see Fig. 7.5b.

The method was used by Richardson for weather prediction, and this fact can now
be a source of some levity. In all probability, however, the hand calculations were not
carried far enough to exhibit strange phenomena. We could, of course. use the 2nd-
order Runge-Kutta method to integrate Eq. 7.28 since it is stable for real negative
A’s. It is, however, conditionally stable and for this case we are rather severely limited
in time step size by the requirement At < Az?/(2v).

There are many ways to manipulate the numerical stability of algorithms. One of
them is to introduce mixed time and space differencing, a possibility we have not yet
considered. Let us investigate the following example

(nt1) | (n=1)
n+1 n—1 2vAt n u; +u; n
L) =) u?) o[ ; )

J J + A2 9

in which the central term in the space derivative in Eq. 4.1 has been replaced by its
average value at two different time levels. This was introduced as the DuFort-Frankel
method in Chapter 4. Now let

2vAL

(7.29)

and rearrange terms
(L4 )™ = (1= a)puf™ +aful) +ul)

There is no obvious ODE between the basic PDE and this final OAE. Hence, there
is no intermediate A-root structure to inspect. Instead one proceeds immediately to
the o-roots.
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The simplest way to carry this out is by means of the Fourier stability analysis
introduced in Section 7.7. This leads at once to

(1+a)o=(1—a)o™" + a<eikAz n e—ikAg;)

or

(1 + a)o; — 2aoy, cos(kAz) — (1 —a) =0
where 5

A:L':MW and k=1.2 M—1

The solution of the quadratic is

acosl, +1/1 —a?sin? b,

1+ a

O =

where
27 k

0, = 7
There are 2M o-roots all of which are < 1 for any real a in the range 0 < a < oc.
This means that the method is unconditionally stable!

=1,2,--- . M—1

The above result seems too good to be true, since we have found an unconditionally
stable method using an explicit combination of Lagrangian interpolation polynomials.

The price we have paid for this is the loss of con-
sistency with the original PDE.

To prove this, we expand the terms in Eq. 7.29 in a Taylor series and reconstruct
the partial differential equation we are actually solving as the mesh size becomes very
small. For the time derivative we have

Lor ) (ne1) (n) | 1 (n)
Sl = | = (0)! G A ) 4

and for the mixed time and space differences

(n) (n+1) (n-1) (n) 2
e ) ) R N0 E o R (n) (n)
2 . AZL’Q 2 2 - (azzu)] - —CE (attu)] ‘I’

1 AtN\? .
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Replace the terms in Eq. 7.29 with the above expansions and take the limit as

At, Az — 0. We find
Jdu 0?u , 0%u

a — y@ — ur yr (7.31)
where
_ At
"= Ax

Eq. 7.27 is parabolic. Eq. 7.31 is hyperbolic. Thus if At — 0 and Az — 0 in such
a way that % remains constant, the equation we actually solve by the method in
Eq. 7.29 is a wave equation, not a diffusion equation. In such a case Fq. 7.29 is not
uniformly consistent with the equation we set out to solve even for vanishingly small
step sizes. The situation is summarized in Table 7.3.

2nd O Runge-Rutta Du Fort—Frankel
For Stability

Al < A At < oc

Conditionally Stable Unconditionally Stable
For Consistency
Uniformly Consistent Conditionally Consistent,
. . du __ . 9%u
With ) ApproximatesZ; = vi—
% = 1/377; only if

v (%)2 <e
Therefore

At < A:c\ﬁ

Table 7.3: Summary of accuracy and consistency conditions for RK2 and
Du Fort-Frankel methods. € = an arbitrary error bound.




